Article #983

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

Pongと強化学習 (105)

posted by sakurai on June 5, 2025 #983

コードの続きの説明です。


このコードブロックは、Deep Q-Network (DQN) トレーニングプロセスの一部で、計算された損失を基にニューラルネットワークの重みを更新する処理を行っています。これは勾配降下法を用いた学習のステップで、具体的には以下の処理を含みます:

1. 勾配のリセット:
           optimizer.zero_grad()

このメソッドは、オプティマイザーに紐づけられたすべてのパラメータの勾配をゼロにリセットします。PyTorchでは、デフォルトで勾配が累積されるため、各トレーニングステップの開始時に明示的にリセットする必要があります。これにより、各バッチのトレーニングが他のバッチの勾配に影響されることなく、独立して行われます。

2. 勾配の計算:
           loss.backward()

loss.backward()は、損失関数の勾配を計算するメソッドです。この関数を呼び出すと、lossに関連するニューラルネットワークのパラメータに対する損失の勾配が自動的に計算され、それぞれのパラメータの .grad 属性に勾配が保存されます。この勾配はニューラルネットワークの学習において重要な役割を果たし、パラメータを最適な方向に調整するために使用されます。

3. パラメータの更新:
           optimizer.step()

optimizer.step()は、計算された勾配を使用してニューラルネットワークのパラメータを更新するメソッドです。このステップでは、オプティマイザーに設定された学習率に基づいて、各パラメータが調整されます。具体的には、各パラメータからその勾配に学習率を掛けた値が引かれ、新しいパラメータ値が得られます。これにより、モデルは次第に最適なパラメータに収束していくことが期待されます。

役割と重要性

これらのステップはニューラルネットワークの訓練において基本的かつ重要であり、エージェントが適切に学習し、パフォーマンスを向上させるために不可欠です。損失を最小化することによって、ネットワークはより良い予測や決定を行うことができるようになり、結果として全体のタスクパフォーマンスが向上します。このプロセスは、学習の進行と共に反復され、エージェントが環境内で最適な行動をとるように訓練されます。


左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax. If you include an ad such as http://, it will be invalidated by our AI system.

Please enter the numbers as they are shown in the image above.