Posts Tagged with "PUA"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

PMHF論文sae2020 (6)

posted by sakurai on August 17, 2020 #295

ISO 26262とPMHFのコンセプト(続き)

論文sae2020$\dagger$のISO 26262とPMHFのコンセプト(続き)です。

The PMHF and all the related failure rate calculations in a product development team are often handled by a reliability engineer and even though the standard uses the metrics reflecting the probability of failure (or unreliability in reliability engineer’s terms), some of the approaches and metrics used by ISO 26262 are not that of reliability engineering practice. Therefore, the objective of this paper is to explain some of the metrics and calculations suggested by the Functional Safety standard in reliability engineering terms in order to make their application easier.

製品開発チームにおける PMHF や関連するすべての故障率計算は信頼性技術者が担当することが多く、規格では故障の確率(信頼性技術者の用語では不信頼度)を反映したメトリクスを使用しているにもかかわらず、ISO 26262 で使用されているアプローチやメトリクスの中には、信頼性工学の実務とは異なるものもある。そこで、本稿の目的は、機能安全規格で提案されているメトリクスや計算の一部を信頼性工学の用語で説明し、その適用を容易にすることである。

「故障の確率(信頼性技術者の用語では不信頼度)」という表現は、ISO 26262的には誤りです。故障の確率や不信頼度(これらは修理を含まない)ではなく修理を考慮した不稼働度が正しい表現です。次の章で説明しますが、これについてはほとんどの論文が同じ誤りを犯しています。その理由は、規格に数学的な説明が無いためであり、これはPMHF式を自ら導出して初めて理解されることです。

PMHFと基本的な信頼性計算

In order to link the PMHF and reliability terminology, certain basics of reliability calculations need to be briefly covered here which can be found in multiple sources (see, for example, [3]). If the random failures in the field can be modeled by a statistical distribution with the probability density function (pdf) f(t), then the cumulative distribution function (CDF) F(t) representing the probability of failure at the time t or unreliability can be calculated as:

PMHF と信頼性の用語を結びつけるために、信頼性計算のある種の基礎をここで簡単に説明する必要があります。現場でのランダムな故障が確率密度関数(pdf) f(t)を持つ統計分布でモデル化できるならば、時刻 t での故障の確率または信頼性の低下を表す累積分布関数(CDF) F(t)は次のように計算できます。

故障だけを考えれば、PMHFは確率密度関数(PDF)あるいは、その累積分布関数である不信頼度(CDF)により表されるのですが、一方ISO 26262では2nd order SMによる周期的な故障検出と修理を仮定しています。従って、修理を考慮すると、不信頼度$F(t)$は不稼働度$Q(t)$に変更する必要があり、確率密度$f(t)$は不稼働密度(PUD)$q(t)$に変更する必要があります。


$\dagger$: Kleyner, A. and Knoell, R., “Calculating Probability Metric for Random Hardware Failures (PMHF) in the New Version of ISO 26262 Functional Safety - Methodology and Case Studies,” SAE Technical Paper 2018-01-0793, 2018


左矢前のブログ 次のブログ右矢

posted by sakurai on October 16, 2018 #66

ISO/TR 12489:2013(E)において、信頼性用語の定義がまとめてあるため、それを記載します。ただし、弊社の考えを交えており、そのまま引用しているわけではありません。以下に$X_\text{item}$をアイテム$item$の無故障運転継続時間(failure free operating time)とするとき、

信頼度(Reliability)

$$ R_\text{item}(t):=\Pr\lbrace\text{item not failed in }(0, t]\rbrace=\Pr\lbrace\mathrm{item\ up\ at\ }t\rbrace=\Pr\lbrace t\lt X_\text{item}\rbrace \tag{66.1} $$ 非修理系システムで、時刻$t$までに一度も故障していない確率。非修理系なので、一度でも故障すると故障しっぱなしになるため、一度も故障していない確率です。

不信頼度(Unreliability, Cumulative Distribution Function, CDF)

$$ F_\text{item}(t):=\Pr\lbrace\mathrm{item\ failed\ in\ }(0, t]\rbrace=\Pr\lbrace\mathrm{item\ down\ at\ }t\rbrace=\Pr\lbrace X_\text{item}\le t\rbrace \tag{66.2} $$ 非修理系システムで、時刻$t$までに故障する確率。

非修理系なので、一度でも故障すると故障しっぱなしになるため、時刻が0からtまでに故障したことがある確率です。等号は有っても無くても値は変わりません。

故障密度(Probability Density, Probability Density Function, PDF)

$$ f_\text{item}(t):=\lim_{dt \to 0}\frac{\Pr\lbrace\mathrm{item\ fails\ in\ }(t, t+dt]\cap\mathrm{item\ up\ at\ } t\rbrace}{dt}=\frac{dF_\text{item}(t)}{dt} \tag{66.3} $$ 又は、微小故障確率形式として、 $$ f_\text{item}(t)dt=\Pr\{\mathrm{item\ fails\ in\ }(t, t+dt]\cap\mathrm{item\ up\ at\ } t\}\\ =\Pr\lbrace t\lt X_\text{item}\le t+dt\rbrace\\ =\Pr\{X_\text{item}\in dt\} \tag{66.4} $$ 非修理系システムで、時刻$t$で、単位時間あたりに故障する確率。正確には、時刻$t$から$t+dt$までに故障する微小確率を$dt$で割り、単位時間あたりに直したもの。

【証明】 条件付き確率公式及び、確率の加法定理を用いて、 $$ f_\text{item}(t):=\lim_{dt \to 0}\frac{\Pr\lbrace t\lt X_\text{item}\le t+dt\rbrace}{dt} \\ =\lim_{dt \to 0}\frac{\Pr\lbrace t\le X_\text{item}\rbrace+\Pr\lbrace X_{item}\le t+dt\rbrace - \Pr\lbrace t\le X_\text{item} \cup X_\text{item}\le t+dt\rbrace}{dt} \\ =\lim_{dt \to 0}\frac{R(t)+F(t+dt)-1}{dt}=\lim_{dt \to 0}\frac{F(t+dt)-F(t)}{dt}=\frac{dF_\text{item}(t)}{dt} \tag{66.5} $$

(瞬間)故障率(Failure Rate)

$$ \lambda_\text{item}(t):=\lim_{dt \to 0}\frac{\Pr\lbrace\mathrm{item\ fails\ in\ }(t, t+dt]\ |\ \mathrm{item\ not\ failed\ at\ } t\rbrace}{dt}=\frac{f_\text{item}(t)}{R_\text{item}(t)} \tag{66.6} $$ 非修理系システムで、時刻$t$で稼働している条件において、単位時間あたりに故障する条件付き確率。正確には、時刻$t$から$t+dt$までに故障する条件付き確率を$dt$で割り、単位時間あたりとしたもの。ISO 26262の場合は、確率分布が指数分布のため、故障率は定数として扱います。

【証明】 条件付き確率の式及び、上記$f_\text{item}(t)$の式を用いて $$ \lambda_\text{item}(t):=\lim_{dt \to 0}\frac{\Pr\lbrace X_\text{item}\le t+dt \cap t \le X_\text{item}\rbrace}{dt}\frac{1}{\Pr\lbrace t \le X_\text{item}\rbrace}=\frac{f_\text{item}(t)}{R_\text{item}(t)} \tag{66.7} $$ 又は、微小故障条件付き確率形式として、 $$ \lambda_\text{item}(t)dt=\Pr\lbrace\mathrm{item\ fails\ in\ }(t, t+dt]\ |\ \mathrm{item\ not\ failed\ at\ } t\rbrace\\ =\Pr\{t\lt X_\text{item}\le t+dt\ |\ t\le X_\text{item}\}\\ =\Pr\{X_\text{item}\in dt\ |\ t\le X_\text{item}\} \tag{66.8} $$

稼働度((Point) Availavility)

$$ A_\text{item}(t):=\Pr\lbrace\mathrm{item\ up\ at\ }t\rbrace \tag{66.9} $$ 修理系システムで、時刻$t$で稼働している確率。

不稼働度((Pont) Unavailavility, PUA)

$$ Q_\text{item}(t):=\Pr\lbrace\mathrm{item\ down\ at\ }t\rbrace=1-A_\text{item}(t) \tag{66.10} $$ 修理系システムで、時刻$t$で不稼働な確率。

不稼働密度((Point) Unavailability Density, PUD)

$$ q_\text{item}(t):=\lim_{dt \to 0}\frac{\Pr\lbrace\mathrm{item\ down\ in\ }(t,t+dt]\cap\mathrm{item\ up\ at\ } t\rbrace}{dt} =\frac{dQ_\text{item}(t)}{dt} \tag{66.11} $$ 又は、微小不稼働確率形式として、 $$ q_\text{item}(t)dt=\Pr\lbrace\mathrm{item\ down\ in\ }(t,t+dt]\cap\mathrm{item\ up\ at\ } t\rbrace \tag{66.12} $$ 時刻$t$で単位時間あたりに不稼働になる確率。正確には、時刻$t$から$t+dt$までに不稼働になる微小確率を$dt$で割り、単位時間あたりに直したもの。failure frequency (故障頻度), unconditional failure intensity (UFI; 無条件故障強度), ROCOF(Rate of OCcurrence Of Failure)とも呼ばれる。

一方、PUDは修理系サブシステムが対象でかつ定期検査修理(PIR)が前提。

平均不稼働密度(Average PUD)

PUDの車両寿命間$T_\text{lifetime}$の平均値を求めると、平均不稼働密度(Average PUD)は、積分の平均値の定理より、 $$ \overline{q_\text{item}}=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}q_\text{item}(t)dt=\frac{1}{T_\text{lifetime}}Q_\text{item}(T_\text{lifetime}) \tag{66.13} $$ AROCOFも同様な定義だが、平均不稼働密度(Average PUD)は修理系サブシステムが対象でかつ定期検査修理(PIR)が前提。

PFH(Probability of Failure per Hour)

注意:Probability of Failure per Hourは古い定義で現在はaverage failure frequency (平均故障頻度), average unconditional failure intensity (平均無条件故障強度)。

$$ PFH:=\overline{q_\text{item}}=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}q_\text{item}(t)dt=\frac{1}{T_\text{lifetime}}Q_\text{item}(T_\text{lifetime})\\ =\frac{1}{T_\text{lifetime}}\Pr\lbrace\mathrm{item\ down\ at\ }T_\text{lifetime}\rbrace, \text{ただし}T_\text{lifetimeは車両寿命} \tag{66.14} $$ PMHFも同様の定義だが、平均不稼働密度(Average PUD)は修理系サブシステムが対象でかつ定期検査修理(PIR)が前提。

Vesely故障率(Vesely Failure Rate)

修理系システムで、時刻$t$で稼働している条件において、単位時間あたりに不稼働になる条件付き確率。conditional failure intensity (条件付き故障強度)とも呼ばれる。

$$ \lambda_\text{v,item}(t):=\lim_{dt \to 0}\frac{\Pr\lbrace\mathrm{item\ down\ in\ }(t, t+dt]\ |\ \mathrm{item\ up\ at\ } t\rbrace}{dt}=\frac{q_\text{item}(t)}{A_\text{item}(t)} \tag{66.15} $$


以下はISO/TR 12489にはない確率関数です。

修理度(Repairability)

修理系システムで、時刻$t$において不稼働度が修理されるその割合。修理時間は無視できるものとする。 $$ M(t):=\Pr\lbrace\text{repaired at }t\ |\ \text{failed at }t\rbrace\tag{66.16} $$


左矢前のブログ 次のブログ右矢

posted by sakurai on September 10, 2018 #59

※この記事は2018年に書かれたものであり、基本的には変わりませんが最近の記事で詳細計算を行っています。

SMのアンナベイラビリティ(不稼働率、PUA)$Q_{SM}(t)$の導出

以前PMHF式を以下で導出しました。 https://fs-micro.com/post/show/id/10.html

ここでは再度PMHFの式を導出して行きますが、事前準備がいくつか必要になりますので、まず、修理系のアンナベイラビリティの公式を導きます。

まず、修理系とは何かを説明します。ISO 26262規格には修理の問題についてはっきり書いていませんが、1st SMが修理系となります。1st SMとは、1st order SMとも呼ばれ、主機能のSG侵害(安全目標侵害=VSG)を防止するためのSMです。一方で、主機能は非修理系です。

1st SMは、2nd SMにより定期的に検査され、故障だと判明した場合は直ちに修理されます。2nd SMとは2nd order SMとも呼ばれ、エレメントがレイテントフォールトとなるのを防止する安全機構です。規格にもあるとおり、修理周期は「検査周期($\tau_{SM}$)+ドライバーが修理工場へ運転して行く時間+修理にかかる時間」です。従って、修理周期=2nd SMの検査周期とみなせます。

規格にははっきり書かれていませんが、検査により故障と判明した部分については、修理され新品同様(as good as new)と見なされます。この検査による故障検出割合が重要であり、Part 10では定数値$K_{FMC,MPF}$で表されます。故障したうちの検出部分なので(59.1)のように条件付き確率と考えがちですが、 $$K_{FMC,MPF}=\Pr\lbrace \text{detectable}\ |\ \text{failed at }t \rbrace\tag{59.1}$$ 故障検出能力は確率的に決まるものではなく、アーキテクチャ的に決まるものだと考えるため、もともとの検出部分の故障について検出可能とします。 $$K_{FMC,MPF}=\Pr\lbrace \text{detectable} \rbrace\tag{59.2}$$ 検出された故障は全て修理されるものとします。 $$\Pr\lbrace \text{repaired}\ |\ \text{detected at }t\rbrace=1\tag{59.3}$$

次にアンナベイラビリティ$Q_{SM}(t)$とは、省略せずに言うとポイントアンナベイラビリティ(PUA)であり、修理系の不稼働率です。 確率の式で表せば、

PUA: $$Q_{SM}(t):=\Pr \lbrace \text{(repairable)SM down at }t \rbrace\tag{59.4}$$ のように、時刻$t$において不稼働である確率を意味します。

一方で、アベイラビリティの式は参考ページまたはBirolini教授の教科書を参照すれば、 $$ A(t):=R(t)+\int_0^t m(x)R(t-x)dx\tag{59.5} $$ であり、ここで、$A(t)$は時刻tにおけるポイントアベイラビリティ、$R(t)$は時刻tにおけるリライアビリティ(信頼度)、$m(t)$は時刻tにおけるリニューアル密度(修理密度)です。規格の特徴として、修理周期は教科書一般にあるように指数関数分布はとらず、定期的に$\tau_{SM}$毎に行われるため、以下の式が成立します。 $$A_{SM}(t)=R_{SM}(t)+K_{SM,FMC,MPF}F_{SM}(\tau_{SM})\sum_{i=0}^{n-1}R_{SM}(t-i\tau_{SM})\tag{59.6}$$

修理分$K_{SM,FMC,MPF}F_{SM}(\tau_{SM})$が時刻$t$の関数でないのは、検出能力$K_{FMC,MPF}$は一定で、かつ毎回の故障確率も一定で、検出した分は全て修理されるため、修理分が一定となるためです。 従って、SMのポイントアベイラビリティ式は以下のようになります。 $$A_{SM}(t)dt=\img[-1.35em]{/images/withinseminar.png}\tag{59.7}$$

これを1から引けば、SMのポイントアンアベイラビリティ(PUA)は以下のように求められます。

PUA: $$Q_{SM}(t)dt=\left[1-A_{SM}(t)\right]dt=\img[-1.35em]{/images/withinseminar.png}\tag{59.8}$$

(59.8)の両辺を時刻$t$で微分すれば、微分可能な$t$におけるPUD(Point Unavailability Density)が求められます。

PUD: $$q_{SM}(t)dt:=(\frac{dQ_{SM}(t)}{dt})dt=\img[-1.35em]{/images/withinseminar.png},\\ \ t\notin\{\tau_i=i\tau; i=1,2,...,n\}\tag{59.9}$$

※ここでの議論において、次に示すような形式的な記法を用いています。例えば、 $$f(t)=\lim_{dt\to +0}\frac{F(t+dt)-F(t)}{dt}=\frac{dF(t)}{dt}$$ と書くところを$dt$が無限小であることを前提として、 $$f(t)dt=dF(t)$$ としています。確率密度関数$f(t)$を求めるよりも、微小確率$f(t)dt$を求めるほうが、次での積分の記述が容易になるためです。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢


ページ: